Acta Crystallographica Section E

Structure Reports Online

ISSN 1600-5368

Sheng-Ying Li,^a Jian-Feng Wang,^{b*} Zhong-Hui Zheng,^a Qing-Yan Xu,^a Yao-Jian Huang,^a Yu-Fen Zhao^b and Wen-Jin Su^a

^aDepartment of Biology, Xiamen University, Xiamen 361005, People's Republic of China, and ^bDepartment of Chemistry, Xiamen University, Xiamen 361005, People's Republic of China

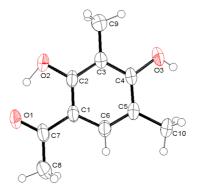
Correspondence e-mail: jfwang@yanan.xmu.edu.cn

Key indicators

Single-crystal X-ray study T = 298 KMean $\sigma(\text{C-C}) = 0.002 \text{ Å}$ R factor = 0.052 wR factor = 0.155Data-to-parameter ratio = 16.6

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-(2,4-Dihydroxy-3,5-dimethylphenyl)-ethanone (Clavatol)


The structure of the title molecule, $C_{10}H_{12}O_3$, is stabilized by an intramolecular $O-H\cdots O$ hydrogen bond. In the crystal structure, the glide-related molecules are linked by $O-H\cdots O$ hydrogen bonds to form molecular chains along [201]. The structure is further stabilized by $\pi\cdots\pi$ interactions.

Received 26 August 2003 Accepted 3 September 2003 Online 11 September 2003

Comment

The title compound, (I), was isolated from *Aspergillus clavatus*, as a phenolic substance (Bergel *et al.*, 1944) lacking antibacterial activity (Gatenbeck & Brunsberg, 1966; Hasall & Todd, 1947). However, our studies show that it exhibits relative antifungal activity toward *Candida albicans* and *Aspergillus niger* with MIC (Minimum Inhibitory Concentration) of 20 and 40 μg ml⁻¹, respectively, as well as moderate antitumor activity against the Raji, KB and A549 cancer cell lines with IC₅₀ values of 9.1, 6.1, and 14.5 μg ml⁻¹, respectively (Li, 2003). Here we report the structure of (I).

The title molecule, as a whole, excluding H atoms, is planar within 0.062 (2) Å (Fig. 1 and Table 1). The planarity is stabilized by an $O-H\cdots O$ intramolecular hydrogen bond involving atoms O1 and O2 (Table 2). The crystal structure shows that the glide-related molecules are linked by $O-H\cdots O$ hydrogen bonds involving a hydroxyl group and the

Figure 1 *ORTEP*III (Farrugia, 1997) view of the title compound, with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

© 2003 International Union of Crystallography Printed in Great Britain – all rights reserved

organic papers

carbonyl O atom to form molecular chains running approximately along [201] (Fig. 2). Furthermore, the glide-related molecules are stacked along the c axis, with the centroids of the aromatic rings separated by 3.618 (1) Å, indicating significant $\pi \cdots \pi$ interactions.

Experimental

The title compound was isolated from *Aspergillus sp.* strain BYY-1, an endophytic fungus of *Avicennia marina* that was collected from the mangrove forest in Fujian Province, People's Republic of China. Crystals were grown using methanol as solvent.

Crystal data

$C_{10}H_{12}O_3$	$D_x = 1.324 \text{ Mg m}^{-3}$
$M_r = 180.20$	Mo $K\alpha$ radiation
Monoclinic, $P2_1/c$	Cell parameters from 3017
a = 8.318 (1) Å	reflections
b = 15.200 (3) Å	$\theta = 2.4 - 28.0^{\circ}$
c = 7.204 (1) Å	$\mu = 0.10 \text{ mm}^{-1}$
$\beta = 96.896 (3)^{\circ}$	T = 298 (2) K
$V = 904.2 (2) \text{ Å}^3$	Block, colorless
Z = 4	$0.35 \times 0.23 \times 0.18 \text{ mm}$

Data collection

Bruker SMART APEX area-	2078 independent reflections
detector diffractometer	1725 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.021$
Absorption correction: multi-scan	$\theta_{\rm max} = 28.3^{\circ}$
(SADABS; Bruker, 2001)	$h = -10 \rightarrow 10$
$T_{\min} = 0.947, T_{\max} = 0.983$	$k = -17 \rightarrow 20$
5370 measured reflections	$l = -8 \rightarrow 9$

Refinement

Кејінетені	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0945P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.052$	+ 0.142 <i>P</i>]
$wR(F^2) = 0.155$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.04	$(\Delta/\sigma)_{\text{max}} = 0.001$
2078 reflections	$\Delta \rho_{\text{max}} = 0.22 \text{ e Å}^{-3}$
125 parameters	$\Delta \rho_{\min} = -0.24 \text{ e Å}^{-3}$
H-atom parameters constrained	Extinction correction: SHELXL97
	Extinction coefficient: 0.034 (8)

 Table 1

 Selected geometric parameters (\mathring{A} , °).

O1-C7	1.243 (2)	C3-C4	1.387 (2)	
O2-C2	1.350(2)	C3-C9	1.496 (2)	
O3-C4	1.352 (2)	C4-C5	1.406(2)	
C1-C6	1.402(2)	C5-C6	1.369 (2)	
C1-C2	1.405(2)	C5-C10	1.499 (2)	
C1-C7	1.448 (2)	C7-C8	1.489 (2)	
C2-C3	1.390(2)		` ′	
C2-O2-H2	109.5	O3-C4-C3	115.4 (1)	
C4-O3-H3	109.5	O3-C4-C5	121.9 (1)	
C6-C1-C2	117.6(1)	C3-C4-C5	122.7 (1)	
C6-C1-C7	121.8 (1)	C6-C5-C4	117.1 (1)	
C2-C1-C7	120.6 (1)	C6-C5-C10	121.7 (1)	
O2-C2-C3	117.2(1)	C4-C5-C10	121.2 (1)	
O2-C2-C1	121.3 (1)	C5-C6-C1	123.1 (1)	
C3-C2-C1	121.4(1)	O1-C7-C1	120.8 (1)	
C4-C3-C2	118.1 (1)	O1-C7-C8	118.5 (1)	
C4-C3-C9	121.0(1)	C1-C7-C8	120.7 (1)	
C2-C3-C9	121.0 (1)		· /	
C2-C1-C7-O1	1.7 (2)	C6-C1-C7-C8	2.5 (2)	

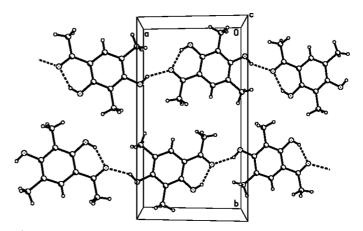


Figure 2 $O-H\cdots O$ hydrogen-bonded chains in the unit cell, viewed down the c axis.

Table 2 Hydrogen-bonding geometry (\mathring{A} , $^{\circ}$).

$D-H\cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdot \cdot \cdot A$	$D-H\cdots A$
O2-H2···O1	0.82	1.82	2.542 (2)	147
O3-H3···O1 ⁱ	0.82	2.01	2.749 (1)	149

Symmetry code: (i) $x - 1, \frac{1}{2} - y, z - \frac{1}{2}$.

All H atoms were positioned geometrically and were included in the refinement in the riding-model approximation [C-H = 0.93–0.96 Å, O-H = 0.82 Å and $U_{\rm iso}({\rm H})$ = 1.5 $U_{\rm eq}$ (parent atom)]. A rotating-group model was used for the methyl and hydroxyl groups.

Data collection: *SMART* (Bruker, 2001); cell refinement: *SMART*; data reduction: *SAINT* (Bruker, 2001); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*III (Farrugia, 1997); software used to prepare material for publication: *SHELXL*97.

The authors thank the China Post-doctoral Science Foundation, the Natural Science Foundation of Fujian Province, China (No.C0110002), the Key Foundation of Science & Technology Project of Fujian Province, China (No. 2002H011) and the National High Technology Research & Development Program of China (863 Program, No. 2001AA620401) for supporting this work.

References

Bergel, F., Morrison, A. L., Moss, A. R. & Rinderknecht, H. (1944). *J. Am. Chem. Soc.* 66, 415–417.

Bruker (2001). SAINT (Version 6.22), SMART (Version 5.625) and SADABS (Version 2.03). Bruker AXS Inc., Madison, Wisconsin, USA.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Gatenbeck, S. & Brunsberg, U. (1966). *Acta Chem. Scand.* **20**, 2334–2338. Hasall, C. H. & Todd, A. R. (1947). *J. Am. Chem. Soc.* **69**, 611–613.

Li, S. Y. (2003). Unpublished results.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.